Pump Technology Newsletter Signup
Get the Engineering360
Stay up to date on:
Hydraulic and pneumatic pump construction, performance (controls and operation), and application notes from the field.

Flowrox Peristaltic Pump for Transferring (LPP-T)

Product Announcement from Flowrox Inc.

Flowrox Peristaltic Pump for Transferring (LPP-T)-Image

Operating Principle

The operating principle of the LPP-T pump is based on the peristaltic effect. As the cylindrical rotor rotates along the hose, the process medium gets pushed forward through the hose. At the same time, the hose behind the compression point reverts to its original circular shape creating a suction effect at the pump inlet port. As a result, the hose bore gets filled with the medium. No backward flow can occur as the hose is squeezed tight by the roller.

One Compression is All You Need

A single, bearing-mounted roller presses the hose only once per the 360 degree operating cycle, producing the maximum flow per revolution. Compared to conventional peristaltic pumps, the LPP-T doubles the flow per hose compression.

Unique Rolling Design

LPP-T pumps incorporate advanced rolling design which eliminates friction and lowers energy consumption. The roller is mounted on a crankshaft creating eccentric rotation during the 360 degree operating cycle.

Trailblazing Technology

Equipped with the standard technical features of a typical peristaltic pump such as positive displacement and self priming, the LPP-T pumps provide exact flow per revolution. Seal less pumps will not get damaged even if they run dry for longer periods of time. The LPP-T pumps are compact in design and require only a small footprint.

The trailblazing LPP-T pumps produce higher flow per hose compression than any other peristaltic pump. They are designed to operate continuously at high speeds and in high pressures without the risk of overheating making them perfect for heavy duty applications.

Incorporating an advanced design, the Flowrox LPP-T pumps can offer unbeatable additional features including

  • 360 degree operating cycle
  • Only one compression per revolution
  • Rolling hose contact
  • In-line pipe connection
  • Reliable hose connection
  • Low lubrication need

and process benefits such as

  • Higher flow per compression than any other peristaltic pump
  • Extended hose lifetime
  • High pressure capability
  • No overheating at higher continuous flow rate
  • Lower energy consumption
  • Easy maintenance
  • Lower operating costs