Analog voltmeters measure voltage or voltage drop in a circuit. They display readings using a needle rather than a digital display. Voltmeters may be standalone devices or a part of a multimeter.

 analog voltmeters selection guide

Description and Operation

 

Analog voltmeters use a wide variety of means to measure voltage, with d'Arsonval moving-coil galvanometers being most common. These devices use a coil of fine wire suspended within a magnetic field. The coil rotates and moves a pointer or other indicator proportional to the applied current level.

 

Moving-coil galvanometers are typically used to measure current in ammeters, but when provided with suitable resistance can also measure DC voltage in voltmeters. They are desirable due to their superior sensitivity but are unsuitable for AC measurement because they are responsive only to average current flow. Moving-coil voltmeters may accurately measure AC voltage if they are fitted with a rectifier and transformer.

 

analog voltmeters selection guide

A d'Arsonval galvanometer of the type described above.

Image credit: The Free Dictionary

 

A second voltmeter type uses taut-band suspension, which also employs a moving coil. Taut-band meters eliminate the pivot and jewel mechanism employed by d'Arsonval meters and replaces it with a twisting platinum band. This setup mitigates friction, which is the cause of wear and repeatability problems in moving-coil instruments.

 

Analog voltmeter readings are subject to errors caused by measuring on an unlevel surface (in which gravity pulls the needle downward) or near a magnetic field. For these reasons users should carefully investigate the meter's environment before calibrating and measuring.

 

Comparison with Digital Voltmeters

 

Modern voltage measurement is most often performed using digital voltmeters due to their superior accuracy and precision. Analog meters have several advantages over digital types:

 

  • Analog needle movement gives a better idea of order of magnitude and trends than a digital readout.
  • Analog meters do not require a power supply beyond the test current source.

 

Analog voltmeters also have a number of disadvantages:

 

  • Multiple scales can cause confusion. (Scales are discussed in more detail below.)
  • Analog meters lack auto-polarity technology. Incorrectly connected test leads can result in needle deflection and damage to the device.
  • Parallax error, which occurs due to improper reading of analog measurement devices. Analog meters are designed to be read with the eye perpendicular to the needle and meter scale. When the scale is viewed at an improper angle, the meter's accuracy is compromised by several degrees. Some meters provide a mirror within the display, so that a user can easily determine the correct viewing angle by checking the needle's reflection. The proper angle is achieved when the needle's reflection is not visible to the user's eye.

 analog voltmeters selection guide

Parallax error on an analog meter. The needle's reflection, visible on the mirror below the scale, indicates that this is an improper viewing angle.

Image credit: University of Cincinnati—Clermont

 

Applications

 

Digital voltmeters have generally superseded analog types, but the latter still finds widespread use in niche applications such as:

 

  • Battery indicators, especially in marine or naval craft
  • Pulse or oscillation measurement, in which the movement of the indicator is more important than the precise voltage value

Scale and Range

 

Reading a voltmeter designed to measure only one voltage range is simple and straightforward, but many meters are configurable to measure multiple ranges and therefore employ more complicated scales. Many analog multimeters can measure both AC and DC voltages and can measure dozens of voltage ranges.

 

analog voltmeters selection guide

 

When viewing the scale above, a user may conclude that the meter is able to measure three different voltage ranges: 0-10V, 0-50V, and 0-250V. More typically, a meter with the above display can measure other ranges which are multiples of the three basic ranges, such as 0-0.5V, 0-2.5V, and 0-1000V.

 

The video below provides a helpful overview of calibrating and reading an analog multimeter (the section on reading voltage begins around 3:45).

 

Video credit: LATTC

 

The multimeter selector switch shown below provides a good example; note that all DC voltage figures at left are multiples of 25, 50, and 100.

 

Image credit: Electronics Area

 

A user must therefore know to use the correct display scale for a selected range and determine a reading's percentage of full scale to find a measured value. For example, a needle reading of 2 on the 0-10V scale is interpreted as 200V if the meter is configured to measure 0-1000V.

 

When measuring an unknown voltage, calibrating a meter to the highest range prevents it from "pegging" at full deflection (the needle moving rapidly to the top of the range) and mitigates damage to the meter. When measuring a known voltage, set the meter to the smallest range which can accommodate the voltage. For example, a 9V battery should be tested on 0-10V, while a 120V outlet should be measured on 0-250V.

 

Standards

 

Published standards related to voltmeters typically concern the device's use for electrical testing. Example standards include:

 

IEC 60051-2—Special requirements for analog ammeters and voltmeters and their accessories

ASTM A1013—Test method for high-frequency core loss of soft magnetic core components using the voltmeter-ammeter-wattmeter method

 

References

 

Radio-Electronics—Using an analog multimeter

 

Image credits:

Weschler Instruments | Ham Radio Parts

 


Related Products & Services

  • Analog Ammeters

    Analog ammeters are metered instruments that measure current flow in amperes. They display current levels on a dial, usually with a moving pointer or needle.

  • Analog dBm Meters

    Analog dBm meters are instruments that measure signal power. They display values on a dial, usually with a needle or moving pointer.

  • Analog Multimeters

    Analog multimeters are instruments that are used to measure electrical quantities such as voltage, current, resistance, frequency and signal power

  • Analog Resistance Meters

    Analog resistance meters are instruments that measure electrical resistance. They display values on a dial, usually with a needle or moving pointer.

  • Digital Ammeters

    Digital ammeters are instruments that measure current flow in amperes and display current levels on a digital display. These devices provide information about current draw and current continuity in order to help users troubleshoot erratic loads and trends

  • Digital Multimeters

    Digital multimeters (or multi-meters) are used to measure electrical quantities such as voltage, current, resistance, frequency, temperature, capacitance, and time period measurements.

  • Digital Panel Meters

    Digital panel meters measure and display processes and electrical variables via an alphanumeric digital readout.

  • Digital Resistance Meters

    Digital resistance meters are instruments that measure electrical resistance. They use solid-state components and display values digitally.

  • Digital Voltmeters

    Digital voltmeters are instruments that measure voltage or voltage drop in a circuit. They use solid-state components and display values digitally.

  • Rotary Limit Switches

    Rotary limit switches use physically-actuated levers to rotate a shaft and operate the contacts in a switch, making them change state. Most products feature a rugged design and are suitable for factory and/or industrial applications; however, because these switches contain mechanical parts, they wear over time. Typically, rotary limit switches are slower than noncontact, electrical devices such as proximity sensors and photoelectric sensors.