Description

 

Metal plates and metal plate stock includes metals and alloys in the form of blanks, flats, bars, plates, and sheet stock. Metal and alloy plates and plate stock are used in a variety of applications such as raw material feed for machining or forming of parts, flooring or floor fabrication, and building and construction materials.

 

How Metal Plates and Plate Stock are Made

 

Producing and manipulating metal plates and plate stock involves a number of different processes. They include casting processes, joining and assembly processes, deformation processes, material removal processes, heat treating processes, and finishing processes.

 

  • Casting processes involve pouring molten metal into a mold cavity where, once solid, the metal takes the shape of the cavity. Continuous casting processes allow continuous production of stock shapes. Casting is used to make ingots which are then use in the forming of metal plates.
  • Joining and assembly processes include welding, soldering, brazing, fastening, and other processes that connect parts permanently or semi-permanently to form a new entity.
  • Deformation processes include metal forming, roll forming, extrusion, forging and sheet metalworking processes. They use plastic deformation, where deformation is induced by external compressive forces exceeding the yield stress of the material.
  • Material removal processes remove extra material from the workpiece in order to achieve the desired shape. They include machining operations, abrasive machining, and nontraditional processes utilizing lasers and electron beams.
  • Heat treating processes include annealing, quenching, tempering, aging, homogenizing, solution treating, and precipitation hardening. Heat treating modifies the strength, ductility, hardness, machinability, and formability of the metal stock
  • Finishing processes engineer the structure of the surface to produce the desired surface finish, texture, corrosion resistance, and fatigue resistance of metal shapes.  Polishing, burnishing, peening, galvanizing, painting, oiling, waxing, lubricating, plating, and coating are types of finishing processes.

Selection Criteria

 

Selection of metal plates and plate stock is usually based first on a design’s required size and shape, and then on either material types or grades as certain design specifications or application constraints require. Substitute materials can be selected and qualified based on the required material properties. Laboratory, performance, or field testing is used to verify performance in some cases.

 

Sizes and Dimensions

 

The GlobalSpec SpecSearch Database contains the ability to select parts based on shapes and dimensions. Dimensions for metal plates and plate stock include overall thickness, gauge thickness, overall width or outer diameter (OD), secondary width, and overall length.

Types of Metals and Alloys

 

The GlobalSpec SpecSearch Database contains information and listings for different metals and alloys. Each can be classified as either a ferrous or non-ferrous metal.

 

  • Ferrous metals and alloys are metals containing iron as the base metal in the alloy. Common ferrous metals and alloys used to manufacture metal plates and metal plate stock include carbon steel, alloy steel, stainless steel, tool steel, or other specialty ferrous metals. For more detailed information on the individual types of ferrous metals, please visit GlobalSpec’s “Ferrous Metals and Alloys” Learn More page or search for a specific metal or alloy of interest.
  • Non-ferrous metals and alloys are metals that do not incorporate iron as the base metal. The most common materials used for metal plates and alloy plates are aluminum, copper, nickel, magnesium, precious metals, and titanium. For more detailed information on individual types of non-ferrous metals, please visit GlobalSpec’s “Nonferrous Metals and Alloys” Learn More page or search for a specific metal or alloy of interest.

Important Mechanical Properties

 

When selecting metal parts, there are other specifications that must be met besides size and shape. The GlobalSpec SpecSearch Database allows the user to search for a metal shape based on a number of different mechanical properties. These include tensile strength, yield strength, elongation, and tensile modulus.

 

  • Tensile strength or ultimate tensile strength (UTS) at break is the maximum amount of stress (force per unit area) required from stretching or pulling to fail (necking) or break the material under tension-loading test conditions. It is an intensive property and therefore does not depend on size, but is affected by surface defects and the temperature of the environment. This property is primarily used in the design of brittle members where breakage of a material from stretching is a concern.
  • Yield strength (YS) is the maximum amount of stress (force per unit area) required to deform or impart permanent plastic deformation (typically of 0.2%) in the material under tension-loading test conditions. The yield point occurs when elastic (linear) stress-strain behavior changes to plastic (non-linear) behavior. Ductile materials typically deviate from Hooke's law or linear behavior at some higher stress level. Knowledge of the yield point is vital when designing a component since it generally represents an upper limit to the load that can be applied.
  • Elongation is the percent amount of deformation that occurs during a tensile test or other mechanical test. Ductile materials will be more inclined to deform than to break. Designs that require metal parts to fit and maintain a fixed shape under stress should consider the part’s elongation properties.
  •  Tensile modulus or Young's modulus is a material constant that indicates the variation in strain produced under an applied tensile load. Materials with a higher modulus of elasticity have higher stiffness or rigidity.

It is important to consider the testing conditions under which the properties of a material have been found. Operating conditions that differ from the testing environment may have adverse effects on a material’s properties.