

We have the motion solutions."

Document Number 206

HERITAGE AND CAPABILITIES ARMORED VEHICLE SLIP RINGS

Introduction

In 2005 the two largest armored vehicle slip ring suppliers in the world merged. The first of these two, Poly-Scientific, was acquired by Moog, Inc. in 2003 and became Moog Components Group (MCG). In 2005 MCG acquired Electro-Tec, the second of the two. In addition, IDM Electronics, a leading European slip ring supplier and Focal Technologies, the world's largest supplier of fiber optic rotary joints and multiplexers were added to MCG. The combined heritage and capabilities of these organizations, with regards to Armored Vehicle slip rings, is addressed in this application note.

Glenn Dorsey, P.E. Slip Ring Product Line Manager

support, and configuration management places MCG in a unique position to support new armored vehicle design, production and support requirements.

Because of MCG's armored vehicle experience and continued research, MCG has been selected as the slip ring supplier for most major armored vehicle upgrade programs in the last 10 years. For example, MCG has provided turret slip rings for the Abrams M1A1 to M1A2 upgrade as well as the Bradley A2 to A3 upgrades. MCG also participated with the Army and GDLS to upgrade the Abrams slip ring to address unique environmental issues discovered during Desert Storm.

Figure 2. Stryker Turret Slip Ring

MCG has been putting the technology in place to support the Armored Vehicle of the future, recognizing that the digital battlefield is putting tremendous pressure on the bandwidth capability of traditional slip rings. MCG has worked with the V-SIL lab of TARDEC (TACOM) on projects to demonstrate various high-speed digital data link capabilities for tank VETRONICS. This research demonstrated that slip rings could be used to support a number of the most advanced VETRONICS data speed requirements. This technology was subsequently inserted into several new armored vehicle upgrade programs. MCG has demonstrated the ability to provide high speed data lines that meet stringent bit error rate (BER), EMI/EMC/ and environmental requirements.

Figure 1. Abrams Turret Slip Ring

Armored Vehicle Tradition

MCG has played a key role in armored vehicle programs since rotating turrets first used slip rings (as highlighted in Table 1). MCG's legacy program has been the Abrams turret slip ring (Figure 1) that has been produced in quantities approaching 10,000 units. Production slip ring programs for the U.S. Army's M60 Tank and Bradley vehicles, the U.S. Marine's Light Armored Vehicle (LAV), the United Kingdom's Warrior, and the Korean K1 Main Battle Tank have given MCG experience with high volume, high reliability armored vehicle programs. The experience with the production volume, logistics

We have the motion solutions."

Table 1. Key Programs Using MCG's Slip Rings/Twist Capsules

APPLICATION	PROGRAM	CUSTOMER
	Abrams Main Battle Tank (M1, M1A1, M1A2)	GDLS
	AAAV, EFV	GDAMS
	M2/M3 Bradley A2 & A3	BAE
	IBCT Stryker	GDLS
	(Light Armored Vehicle) LAV	GDLS
ADVANCED	M113 APC	
ARMORED	M60 Patton	
VEHICLE	M48 Patton	
TURRET	M728 Combat Engineer	
SLIP RINGS	Vehicle (CEV)	
	AAVP7A1 Amphibious	
	Assault Vehicle	
	IBCT Anti-Tank Guided	
	Missile Vehicle (ATGM)	
	Warrior (UK)	BAE
	CV 90	BAE
	Bradley CIV	Raytheon
ELECTRO- OPTIC SYSTEMS (ARMORED- VEHICLES)	CITV	Raytheon
	HTI Thermal Viewer	Raytheon
	Stryker Thermal Viewer	GDLS
	SGTS/ KEOTS	Raytheon
	Korean K-1	Raytheon

The recent the addition of Focal Technologies, the world's largest supplier of FORJs and Multiplexers, to Moog Components Group has been a significant addition to the already extensive high speed data capabilities of MCG. In addition, MCG's fiber brush technology offers significant weight, size, and reliability advantages over traditional electrical contact, and advanced design solutions for fluid rotary unions provide long life rotary fluid connections.

The breadth of experience that Moog Components has with armored vehicle turret slip rings is further augmented by the leadership role they have played in the development of slip rings and twist capsules for electro-optic systems used by these same armored vehicles. For example, MCG has provided all the slip rings for the Commanders Independent Thermal Viewer (CITV) used on the Abrams A2 as well as all the slip rings (azimuth axis) and twist capsules (elevation axis) for the Commanders Independent Viewer (CIV) for the Bradley A3. These designs further highlight MCG's capability to provide high data rate solutions in environmentally robust and size efficient packages.

Figure 3. Bradley Turret Slip Ring

To support the design and production capabilities of slip rings for Armored Vehicles, MCG has made significant investment in design tools and production equipment. The tables below show some of these capabilities.

Table 2 shows the design tools available to MCG engineers. 3-D solid modeling for mechanical design work is supported by finite element, fluid flow, statistical, and reliability modeling capabilities. Electrical analysis capability is provided by both high voltage modeling and transmission line modeling (for high data rate lines). Optical modeling software is used in the case of fiber optic transmission lines.

Table 3 shows a sample of the test equipment available to MCG engineers to evaluate new designs. An extensive array of data transmission line test equipment allows MCG engineers to characterize and analyze the capability of new designs to provide acceptable signal quality. The MCG Materials Lab provides expertise for both process control and problem analysis. The environmental and mechanical test equipment allow a wide range of design verification and qualification testing as well as environmental stress screening (ESS) and HALT/HASS evaluation.

We have the motion solutions.[™]

Table 2: Modeling and Simulation Capabilities

Function	Modeling Capability	Description
Weight and size	Finite Element Analysis	FEM software will be critical in the size and weight reduction
reduction	(FEA)	effort. Models will be developed and analyzed to optimize material
		properties and design features.
Mechanical Design	IDEAS	3-D solid modeling software.
and 3-D Modeling		
Optical wave path	ZEMAX	Allows optical components to be modeled and performance
simulation		parameters predicted.
Model high voltage	Coulomb	Coulomb allows the modeling of high voltage fields to determine
fields		risk of corona or high voltage arcing.
Optimize high speed	Zeland IE3D	This is a method of moments field solver (Maxwell's Equations)
data performance of	Electromagnetic Simulation	that is used for modeling standard and non-standard electrical
transmission lines	Software	transmission lines to optimize high frequency performance.
Analysis of high	HyperLynx GHz	HyperLynx allows the analysis of signals ranging from megabit to
frequency		gigabit speeds. This capability allows impedance, radiated
transmission lines		emissions, eye diagram analysis and crosstalk analysis to be
		performed and optimized before any fabrication is started.
Perform frequency	PSpice	SPICE is a general purpose analog circuit simulator that is used to
domain analysis on		verify circuit designs and to predict the circuit behavior.
slip ring structures		
Statistical modeling	Minitab	Minitab is used for six sigma design analysis to ensure that
-		reliability goals are factored into tolerance analysis.
Reliability Modeling	Relex Reliability Modeling	An integrated set of reliability analysis tools for performing
- •		reliability and maintainability analyses.
Fluid Flow	Custom Spreadsheet	This program allows designers to model fluid flow through FRUs
	Solution	and determine critical performance parameters.

We have the motion solutions.™

Table 3: Test Equipment

High Speed Data and Communication Test Equipment

Manufacturer	Model	Equipment Type	
Anritsu	MP1632C	Bit Error Test Set	
Synthesis Research	7500A	BERTscope	
Tektronix	CS7404	Communication Signal Analyzer	
Tektronix	404	Communication Signal Analyzer	
Tektronix	GigaBERT 1400	Generator	
Tektronix	GigaBERT 1400	Analyzer	
Ando	AQ6317B	Optical Spectrum Analyzer	
Anritsu	MS96A	Optical Spectrum Analyzer	
Tektronix	CS8200	Communication Signal Analyzer	
Hewlett Packard	3762A	Data Generator	
Hewlett Packard	3763A	Error Detector	
Tektronix	TDS 460A	4 Channel Digitizing Oscilloscope	
Hewlett Packard	33120A	Function Generator	
Tektronix	147A	NTSC Test Signal Generator	
Tektronix	520	Vectorscope	
Tektronix	1425R	NTSC Video Waveform Monitor	
Tektronix	1430	Random Noise Measuring Set	
Tektronix	VM700A	Measurement Set	
Agilent	81619A	Lightwave Multimeter	
Agilent	81612	Lightwave Multimeter Plug-in	
Agilent	8720ES	20 GHz Vector Network Analyzer	
Agilent	86100	20 GHz DCA/Oscilloscope	

Materials Analysis Equipment

Manufacturer	Model	Equipment Type	
Physical Electronic	Model 550	Scanning Auger Electron Spectroscopy and X-ray Photoelectron	
Industry		Spectroscopy	
Nicolet	Impact 400	Microscopic Fourier Transform Infrared Spectrometer	
ISI	Super 3A	Scanning Electron Microscope and Energy Dispersive X-ray (SEM/EDS	
Veeco	XRF-5200L	X-ray Fluorescence Spectroscopy	
TA Instruments	DSC 2010	Differential Scanning Calorimeter (DCS)	
Perkin-Elmer	2380	Atomic Absorption Spectrometer	
SRI	8610C	Gas Chromatograph (GC)	
		DC-1000Hz Automatic Magnetic Hysteresisgraph (AMH)	
Micrometer	22	Dage Micro Tensile Tester	
Brookfield	DV-II+	-20C to 150C Cone and Plate Viscometer	
Instron	1123	Universal Testing Machine	

We have the motion solutions.[™]

Chemical Analysis Laboratory

Environmental and Mechanical Test Equipment

Manufacturer	Model	Equipment Type	Functional Capability
Thermatron, 2x	SE600-6-6	Environmental Chamber	10%-90%RH
			-70C – +170C
Thermatron	PR-CH-5-5-AC	Environmental Chamber	-70C – +170C
Thermatron	S-1.2	Environmental Chamber	-70C – +170C
Thermatron	S-1.2	Environmental Chamber	-70C – +170C
Thermatron	S-16-3800	Environmental Chamber	-70C – +170C
Thermatron	S5.5	Environmental Chamber	-70C – +170C
Cincinnati Sub	ZH-32-3-3-H/AC	Environmental Chamber	to 100% RH
Zero			-70C – +170C
Tenney	8TS		-70C – +170C
Blue M	WSP-109BMF3		Cold: -75C – 0C
			Hot: +85C – +200C
Starrett	HGDC242418	CMM	3 Axis: 24"×24"×18"
Starrett	RCS402824	CMM	3 Axis: 40"×28"×24"
Ram Optical	OMIS III	Optical Vision Measurement System	3 Axis: 12"×12"×16"
Instrument			
UnHoltz Dickie		Vibration System	3300 lbf, Random
			4000 lbf, Sine
LDS		Vibration and Shock System	7000 lbf, Random
			8000 lbf, Sine
Custom Built		ESS Chamber Connected to Liquid Nitrogen	12C/minute ramp rate
Custom Built, 5×		Vacuum Chambers	10E-6 torr; -50C – +170C
Polytec	Model 5000	Laser Vibrometer	10 m/s