Fume Hoods Information

304 Stainless Steel or CR Steel Hood safely vents noxious or hazardous fumes away from the work surfaceLaboratory fume hoods are partially enclosed workspaces that are exhausted to the outside. Their primary purpose is to keep toxic or irritating vapors out of the general laboratory working area. A secondary purpose is to serve as a shield between the worker and the equipment being used when there is the possibility of an explosive reaction, or to protect the specimen. 

Laboratory fume hoods are comprised of the hood itself and a sash, which is the front panel of the fume hood that can be opened and closed to maximize access and minimize airflow.


Fume Hoods


Fume Hood Efficiency

The efficiency of a fume hood is measured by its hood face velocity and required air flow.

Hood face velocity is a measurement of air flow speed across the imaginary plane running between the bottom of the sash to the work surface. Generally measured in feet per minute (fpm), the greater the hood face velocity, the more quickly toxins and other vapors can be flushed from the system.

Required airflow is related to hood face velocity in that it is a measurement of the amount of air flow required to achieve a laminar flow velocity of 100 feet per minute.

General purpose fume hoods usually function with a hood face velocity of 100 fpm. Stronger fume hoods are available to work with specific chemicals and technologies. Two commonly sought-out types include radioisotope and perchloric acid hoods.

Radioisotope hood systems are ideally made from welded stainless steel to ensure against absorption of radioactive materials. In order to comply with licensing requirements, radioisotope hoods require a face velocity of 125 fpm.

Perchloric acid hoods have wash-down capabilities to prevent the buildup of explosive perchlorate salts within the exhaust systems.

Construction Types

There are five main hood construction types (although custom designs are available).  These include:

Conventional hoods represent the original, simplest hood design style. With a conventional hood the volume of air exhausted is constant, regardless of sash height. (Image below left)

Fume Hoods Fume Hoods

Image credits: Texas State University

Bypass hoods have an added engineering feature and are considered a step up from conventional hoods. An air bypass incorporated above the sash provides an additional source of room air when the sash is closed. (Image above right)

Auxiliary air hoods have attached dedicated ducts to supply outside air to the face of the bypass hood. The main advantage of an auxiliary air hood is the energy savings realized by reducing the amount of heated or air conditioned room air exhausted by the hood. (Image below left)

Fume Hoods Fume Hoods

Image credit: Texas State University Image credit: Pharma Financial Express

Variable air volume (VAV) hoods are the most sophisticated hood types, requiring technically proficient design, installation and maintenance. The primary characteristic of VAV hoods is their ability to maintain a constant face velocity as sash height changes. (Image above right)

Ductless fume hoods have a conventional hood design but are self-contained to recirculate air back into the lab after filtration occurs. These hoods use either High Efficiency Particulate Air (HEPA) filters or Activated Carbon Filtration (ACF) technology to remove contaminants from the hood air.


ASHRAE STD 110 -- Method of Testing Performance of Laboratory Fume Hoods

ANSI Z9.5 -- Laboratory Ventilation

CSA Z316.5 -- Fume hoods and associated exhaust systems

Image credit: 

Terra Universal, Inc. | University of Vermont Risk Management and Safety Training


Already a GlobalSpec user? Log in.

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

Customize Your GlobalSpec Experience

Category: Fume Hoods
Privacy Policy

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.