Metal Profiles and Structural Shapes Information



Metal profiles and structural shapes include metals and alloys in the form of bars, rods, beams, plates, foils, and other standard shapes. Depending on the type of selection activity and application, a metal shape may be selected based on its material type or from specific mechanical properties relative to the service conditions.


How Are Metal Shapes Made


Metal shapes can be designed and manipulated through a large number of processes which are grouped into categories. They are casting processes, joining and assembly processes, deformation processes, material removal processes, heat treating processes, and finishing processes.


  • Casting processes involve pouring molten metal into a mold cavity where, once solid, the metal takes the shape of the cavity. Continuous casting processes allow continuous production of stock shapes.
  • Joining and assembly processes include welding, soldering, brazing, fastening, and other processes that connect parts permanently or semi-permanently to form a new entity.
  • Deformation processes include metal forming, roll forming, extrusion, forging, and sheet metalworking processes. They use plastic deformation, where deformation is induced by external compressive forces exceeding the yield stress of the material.
  • Material removal processes remove extra material from the workpiece in order to achieve the desired shape. They include machining operations, abrasive machining, and nontraditional processes utilizing lasers and electron beams.
  • Heat treating processes include annealing, quenching, tempering, aging, homogenizing, solution treating, and precipitation hardening. Heat treating modifies the strength, ductility, hardness, machinability, and formability of the metal stock
  • Finishing processes engineer the structure of the surface to produce the desired surface finish, texture, corrosion resistance, and fatigue resistance of metal shapes.  Polishing, burnishing, peening, galvanizing, painting, oiling, waxing, lubricating, plating, and coating are types of finishing processes.

Selection Criteria


Selection of metal shapes and stocks is usually based first on a design’s required size and shape, and then on either material types or grades as certain design specifications or application constraints require. Substitute materials can be selected and qualified based on the required material properties. Laboratory, performance, or field testing is used to verify performance in some cases.


Sizes and Shapes


The GlobalSpec SpecSearch Database contains the ability to select parts based on shapes and dimensions. Dimensions include overall thickness, gauge thickness, overall width or outer diameter (OD), secondary width, overall length, and inner diameter (ID). Shapes, among others, include sheets, profiles, squares, rods, and channels.

Types of Metals and Alloys


The GlobalSpec SpecSearch Database contains information and listings for different metals and alloys. Each can be classified as either a ferrous or non-ferrous metal.


Ferrous metals and alloys are metals containing iron as the base metal in the alloy. The most common types of ferrous metals are steels such as stainless steel, carbon steel, tool steel, alloy steel, maraging steel, or specialty steels. They are used in countless applications as construction materials, medical devices, tools, magnetic cores, wires, and in the aerospace, military, and medical fields. For more detailed information on the individual types of ferrous metals, please visit GlobalSpec’s “Ferrous Metals and Alloys” Learn More page or search for a specific metal or alloy of interest.


Non-ferrous metals and alloys are metals that do not incorporate iron as the base metal. These include copper, aluminum, nickel, zinc, titanium, precious metals, low-melting metals, and refractory metals. They have use in countless applications from simple commercial-use in plumbing to cutting-edge designs in the aerospace and nuclear industries. For more detailed information on individual types of non-ferrous metals, please visit GlobalSpec’s “Nonferrous Metals and Alloys” Learn More page or search for a specific metal or alloy of interest.


Important Mechanical Properties


When selecting metal parts, there are other specifications that must be met besides size and shape. The GlobalSpec SpecSearch Database allows the user to search for a metal shape based on a number of different mechanical properties. These include tensile strength, yield strength, elongation, and tensile modulus.


Tensile strength or ultimate tensile strength (UTS) at break is the maximum amount of stress (force per unit area) required from stretching or pulling to fail (necking) or break the material under tension-loading test conditions. It is an intensive property and therefore does not depend on size, but is affected by surface defects and the temperature of the environment. This property is primarily used in the design of brittle members where breakage of a material from stretching is a concern.


Yield strength (YS) is the maximum amount of stress (force per unit area) required to deform or impart permanent plastic deformation (typically of 0.2%) in the material under tension-loading test conditions. The yield point occurs when elastic (linear) stress-strain behavior changes to plastic (non-linear) behavior. Ductile materials typically deviate from Hooke's law or linear behavior at some higher stress level. Knowledge of the yield point is vital when designing a component since it generally represents an upper limit to the load that can be applied.


Elongation is the percent amount of deformation that occurs during a tensile test or other mechanical test. Ductile materials will be more inclined to deform than to break. Designs that require metal parts to fit and maintain a fixed shape under stress should consider the part’s elongation properties.


 Tensile modulus or Young's modulus is a material constant that indicates the variation in strain produced under an applied tensile load. Materials with a higher modulus of elasticity have higher stiffness or rigidity.

It is important to consider the testing conditions under which the properties of a material have been found. Operating conditions that differ from the testing environment may have adverse effects on a material’s properties.



Already a GlobalSpec user? Log in.

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

Customize Your GlobalSpec Experience

Category: Metal Profiles and Structural Shapes
Privacy Policy

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.